近日,奥地利维也纳大学Tim Gruene团队实现了用电子衍射法测定分数电荷。这一研究成果发表在2025年8月20日出版的《自然》杂志上。
原子分数电荷是理解分子结构、相互作用和反应性不可或缺的一部分,它仍然是一个模糊的概念,缺乏精确的量子力学定义。原子粒子电荷的准确测定在化学合成、应用材料科学和理论化学等领域具有深远的影响。它们在分子动力学模拟中起着至关重要的作用,分子动力学模拟可以作为化学过程的计算显微镜。到目前为止,还没有一种通用的实验方法能够量化化合物中单个原子的部分电荷。
研究组介绍了一种实验方法,基于通过电子衍射确定的晶体结构来分配部分电荷,适用于任何晶体化合物。这种方法无缝集成到标准电子晶体学工作流程中,不需要专门的软件或先进的专业知识。此外,它不限于特定类别的化合物。该方法的多功能性通过其在多种化合物中的应用得到了证明,包括抗生素环丙沙星、氨基酸组氨酸和酪氨酸以及无机沸石ZSM-5。研究组将这一新概念称为离子散射因子建模。它促进了对分子结构的更全面和精确的理解,为化学和材料科学的众多领域的应用提供了机会。
附:英文原文
Title: Experimental determination of partial charges with electron diffraction
Author: Mahmoudi, Soheil, Gruene, Tim, Schrder, Christian, Ferjaoui, Khalil D., Frjdh, Erik, Mozzanica, Aldo, Takaba, Kiyofumi, Volkov, Anatoliy, Maisriml, Julian, Paunovi, Vladimir, van Bokhoven, Jeroen A., Keppler, Bernhard K.
Issue&Volume: 2025-08-20
Abstract: Atomic partial charges, integral to understanding molecular structure, interactions and reactivity, remain an ambiguous concept lacking a precise quantum-mechanical definition1,2. The accurate determination of atomic particle charges has far-reaching implications in fields such as chemical synthesis, applied materials science and theoretical chemistry, to name a few3. They play essential parts in molecular dynamics simulations, which can act as a computational microscope for chemical processes4. Until now, no general experimental method has quantified the partial charges of individual atoms in a chemical compound. Here we introduce an experimental method that assigns partial charges based on crystal structure determination through electron diffraction, applicable to any crystalline compound. Seamlessly integrated into standard electron crystallography workflows, this approach requires no specialized software or advanced expertise. Furthermore, it is not limited to specific classes of compounds. The versatility of this method is demonstrated by its application to a wide array of compounds, including the antibiotic ciprofloxacin, the amino acids histidine and tyrosine, and the inorganic zeolite ZSM-5. We refer to this new concept as ionic scattering factors modelling. It fosters a more comprehensive and precise understanding of molecular structures, providing opportunities for applications across numerous fields in the chemical and materials sciences.
DOI: 10.1038/s41586-025-09405-0
Source: https://www.nature.com/articles/s41586-025-09405-0
来源:科学网 小柯机器人