构建单层铁簇作为CO2电还原模型催化剂

近日,深圳大学何传新团队实现了构建单层铁簇作为CO2电还原模型催化剂。相关论文发表在2025年9月2日出版的《美国化学会志》上。

构建模型催化剂以明确活性位点和阐明构效关系是电催化反应的瓶颈问题。例如,铁基材料已被广泛研究用于各种电催化反应,例如CO2电还原(CO2RR)。然而,由于这些催化剂的复杂性质,铁在催化机制中的确切作用仍然存在争议,并且正在进行广泛的研究。

研究组在超高真空条件下,通过气相沉积在单晶Au(111)衬底上成功地构建了一系列单层Fe薄膜(ML-Fe),作为CO2RR的模型催化剂。值得注意的是,通过扫描隧道显微镜(STM)观察到,铁晶体的尺寸可以在原子尺度(~ 2nm)上调谐。实验和理论计算表明,ML-Fe在CO2RR过程中CO生成的法拉第效率(FE)达到60%。当Fe层进一步增加形成纳米颗粒时,Fe位点与*CO中间体的电子相互作用和结合强度更强,从而使主要反应途径从CO2RR转变为析氢(HER)。这项工作可以为设计具有明确活性位点的模型催化剂提供有价值的见解,以研究不同电催化体系中的结构-活性关系。

附:英文原文

Title: Constructing Monolayer Fe Clusters as Model Catalysts for CO2 Electroreduction

Author: Hengpan Yang, Huizhu Cai, Kai Song, Sizhen He, Shangzhao Feng, Zhi Chen, Xue Zhang, Qi Hu, Chuanxin He

Issue&Volume: September 2, 2025

Abstract: Constructing model catalysts to clarify the active sites and elucidate structure–activity relationships represents a bottleneck issue in electrocatalytic reactions. For instance, Fe-based materials have been widely investigated for various electrocatalytic reactions, e.g., CO2 electroreduction (CO2RR). However, the precise role of Fe in the catalytic mechanism remains debated and is under extensive investigation due to the complex properties of those catalysts. Herein, we successfully construct a series of monolayer Fe clusters (ML-Fe) on a single-crystal Au(111) substrate via vapor deposition under ultrahigh vacuum (UHV) conditions, which serve as model catalysts for CO2RR. Notably, the size of Fe clusters can be tuned at the atomic scale (~2 nm) as observed by scanning tunneling microscopy (STM). Experimental and theoretical calculations demonstrate that ML-Fe achieves >60% Faradaic efficiency (FE) for CO production during CO2RR. When the Fe layer further increases to form nanoparticles, Fe sites exhibit stronger electron interaction and binding strength with *CO intermediates, consequently shifting the dominant reaction pathway from CO2RR to hydrogen evolution (HER). This work could provide valuable insights into designing model catalysts with well-defined active sites to investigate the structure–activity relationships in diverse electrocatalytic systems.

DOI: 10.1021/jacs.5c05325

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c05325