抑制全球海洋上的气溶胶沉积

近日,美国伍兹霍尔海洋研究所Yipeng He团队实现了抑制全球海洋上的气溶胶沉积。相关论文于2025年9月17日发表在《自然—地球科学》杂志上。

气溶胶通过改变地球的辐射平衡和海洋生物地球化学循环对气候产生实质性影响。然而,由于对海洋区域的直接观测有限,对海洋表面气溶胶沉积的精确量化仍然颇具挑战性。

为了解决这一观测空白,研究组分析了宇宙产生的放射性核素铍-7,它在大气和海水中同时测量。铍-7在大气中自然产生,并在通过干湿过程沉积到海洋表面之前迅速附着在亚微米气溶胶颗粒上,使其成为量化气溶胶沉积的直接示踪剂。研究组将以前在北太平洋、赤道太平洋、北大西洋和北冰洋的巡航测量结果与南太平洋、印度洋和南大洋的测量结果结合起来,得出了一个修正的全球海洋气溶胶沉积参数化。

与GEOS-Chem化学输运模式的参数化相比,研究组发现全球海洋上的气溶胶沉积速率被低估了39±23%,因此对海洋上空气溶胶的寿命平均高估了69±92%。他们的观测约束结果表明,气溶胶过程比以前估计的更具动态性,这对人们理解全球气溶胶驱动的气候效应和海洋生物地球化学过程具有重要意义。

附:英文原文

Title: Constraining aerosol deposition over the global ocean

Author: He, Yipeng, Kadko, David C., Stephens, Mark P., Sheridan, Michael T., Buck, Clifton S., Marsay, Chris M., Landing, William M., Zheng, Minjie, Liu, Pengfei

Issue&Volume: 2025-09-17

Abstract: Aerosols substantially influence the climate by modifying Earth’s radiative balance and marine biogeochemical cycles. However, accurate quantification of aerosol deposition onto ocean surfaces remains challenging due to the limited direct observations over oceanic regions. Here, to address this observational gap, we use the cosmogenic radionuclide beryllium-7, measured simultaneously in the atmosphere and seawater. Beryllium-7 is naturally produced in the atmosphere and rapidly attaches to submicrometre aerosol particles before being deposited onto the ocean surface through wet and dry processes, making it a direct tracer for quantifying aerosol deposition. We combine previous measurements from cruises in the North Pacific, equatorial Pacific, North Atlantic and Arctic oceans with measurements from the South Pacific, Indian and Southern oceans to derive a revised aerosol deposition parameterization across the global ocean. Compared with the parameterizations used in the GEOS-Chem chemical transport model, we find that aerosol deposition rates over the global ocean have been underestimated by 39±23%, consequently overestimating aerosol lifetimes over the oceans by an average of 69±92%. Our observationally constrained results suggest that aerosol processes are more dynamic than previously estimated, with important implications for our understanding of aerosol-driven climate effects and marine biogeochemical processes globally.

DOI: 10.1038/s41561-025-01785-2

Source: https://www.nature.com/articles/s41561-025-01785-2