圣路易斯的华盛顿大学J. Nathan Kutz研究小组近日取得一项新成果。经过不懈努力,他们揭示了唤醒是大脑时空动力学的普遍嵌入。2025年9月24日出版的《自然》杂志发表了这项成果。
该课题组研究人员提出,这种共变部分反映了一个潜在的芳香相关过程的结构化、非线性动力学,该过程在秒的时间尺度上组织了全脑和全身的生理。通过在动力系统理论中构建这一解释,研究团队得出了一个令人惊讶的预测:一个单一的、标量的芳香测量(例如,瞳孔直径)应该足以重建大规模大脑生理学的多维、时空测量的持续进化。为了验证这一假设,研究小组对清醒的小鼠进行了多模态全皮层光学成像和行为监测。小组证明了神经元钙、代谢和脑血氧的秒尺度时空动态可以通过瞳孔直径的时间延迟嵌入重建的低维非线性流形精确而简洁地建模。将这一框架扩展到艾伦大脑观测站的行为和电生理测量,该研究团队展示了通过共享芳香歧管的映射将不同的实验数据集成到统一的生成模型中的能力。他们的研究结果支持了这样一种假设,即自发性的、以秒为时间尺度的全脑生理的空间结构波动——被广泛解释为反映了区域特异性的神经交流——在很大程度上是低维的、全生物体的动力系统的表达。反过来,将芳香本身重新定义为一种潜在的动力系统,为观察不同模式、背景和尺度下的大脑、身体和行为波动提供了新的视角。
研究人员表示,清醒生物体的神经活动与行为和生理测量显示出广泛的、时空上的不同相关性。
附:英文原文
Title: Arousal as a universal embedding for spatiotemporal brain dynamics
Author: Raut, Ryan V., Rosenthal, Zachary P., Wang, Xiaodan, Miao, Hanyang, Zhang, Zhanqi, Lee, Jin-Moo, Raichle, Marcus E., Bauer, Adam Q., Brunton, Steven L., Brunton, Bingni W., Kutz, J. Nathan
Issue&Volume: 2025-09-24
Abstract: Neural activity in awake organisms shows widespread, spatiotemporally diverse correlations with behavioural and physiological measurements1,2,3,4. We propose that this covariation reflects in part the structured, nonlinear dynamics of an underlying arousal-related process that organizes brain-wide and body-wide physiology on the timescale of seconds. By framing this interpretation within dynamical systems theory, we arrive at a surprising prediction: a single, scalar measurement of arousal (for example, pupil diameter) should suffice to reconstruct the continuous evolution of multidimensional, spatiotemporal measurements of large-scale brain physiology. Here, to test this hypothesis, we perform multimodal cortex-wide optical imaging5 and behavioural monitoring in awake mice. We demonstrate that the seconds-scale spatiotemporal dynamics of neuronal calcium, metabolism and brain blood oxygen can be accurately and parsimoniously modelled from a low-dimensional, nonlinear manifold reconstructed from a time delay embedding6,7 of pupil diameter. Extending this framework to behavioural and electrophysiological measurements from the Allen Brain Observatory8, we demonstrate the ability to integrate diverse experimental data into a unified generative model via mappings from a shared arousal manifold. Our results support the hypothesis9 that spontaneous, spatially structured fluctuations in brain-wide physiology on timescales of seconds—widely interpreted to reflect regionally specific neural communication10,11—are in large part expressions of a low-dimensional, organism-wide dynamical system. In turn, reframing arousal itself as a latent dynamical system offers a new perspective on fluctuations in brain, body and behaviour observed across modalities, contexts and scales.
DOI: 10.1038/s41586-025-09544-4